
A Brief Overview of the VIOLA Engine, and its
Applications

Viola is a tool for the development and support of visual interactive media
applications. Possible viola applications range from a simple clock to a World Wide
Web hypermedia browser (ViolaWWW).

ViolaWWW is what most people equate with "Viola", which is convenient. But it is
important to keep in mind that ViolaWWW (the Viola−based World Wide Web
browser) is just an application, albeit the most significant, of the Viola
toolkit/language system, and that Viola can be used to build many other applications.

This paper will briefly gloss over the basics of the Viola engine, then briefly describe
some Viola applications. The first section is a little thick with technical material, so
if you’re more interested in what Viola can do, read the Applications section first.

At the basic lavel, the Viola system is a combination of the following major
subsytems:

Object orientation support. Data is encapsulated into "object" units, and there
is a classing and inheritance system for the objects. This model encourages an
application to be divided into discrete units, and helps to make applications
more scalable and cleaner in design.
A scripting language. It is used to program the behaviour of each viola
objects.
A graphical elements (user interface) toolkit. The "widgets" exist as classes in
the Viola class hierarchy. The set of widgets implemented in Viola is similar
to those found in graphical user interface toolkits like Xt, plus more unusual
widgets such as HyperCard−like cards and invisible celopane buttons, and
hypertext textfield.
Supporting libraries. Such as the libraries for GIF, XPM, WWW.

The Object Orientation Support −− Classes and
Objects

The single inheritance classing model used in viola defines the basic types, or
"classes", of object instances. Many of these predefined class types happen to be GUI
oriented, because of the current application emphasis on hypermedia. But, many

classes are non−visual and have nothing to do with GUIs.

An object model is enforced to control complexity: to provide a relatively simple
way of data encapsualization; for improving the size scalability and reusability of
viola applications; and for network distribution of applications (distintive objects as
addressable resources).

Shown below is the Viola class hierarchy tree. Note that the Cosmic class is the root
of the hierarchy.

Each new class may define new attributes, and all classes inherit all attributes from
the "super" (hierarchy ancestor) class. So, every object would have more or less the
same sets of attributes, depending on the class of the object.

Among other things, this inheritance behaviour is useful for code sharing among the
classes.

This class hierarchy may seem deficient compared to the GUIs provided by toolkits
like Motif. But, it’s actually not as deficient as it seems. For the same reason as
Tk/Tcl, Viola does not require the hard coding of, for example, dialog boxes, to
achieve the same functionality.

Because of the interpretive nature of the system, many complex GUIs can be
composed out of primitive elements, dynamically. To build a dialog box, a script
could be written to create the necessary objects, and combine them together to
constitute a dialog box.

To better show what a viola object is, consider this listing:

\class {txtButton}
\name {hello}
\label {Hello, world!}
\script {
 switch (arg[0]) {
 case "buttonRelease":
 bell();
 break;
 }
 usual();
}
\width {200}
\height {30}
\BGColor {grey45}
\BDColor {white}
\FGColor {white}
\

It is the file level representation of a Hello World "program" (just one object, in this
case). The important to note is that an object is basically just a grouping of attributes,
such as the object’s class, name, script (the object’s non−default behaviour), colors,
dimension.

And this is what that object description instantiates to:

(If this were rendering on ViolaWWW, the button could actually be live on this
document page!)

This "Hello World" example is obviously a very simple viola application that
consists of only one object. A significant viola application, such as the ViolaWWW
for example, consists of about 400 objects−− around 150 core objects that make up
the WWW browser, and about 250 supporting objects that are specific to WWW data
types such as HTML, etc.

Messaging System

Viola is very much message driven. Messages may be generated by a number of

ways. A message is typically caused by the user interacting with a graphical user
interface object, but it could also be generated by other objects, or by a timer facility.
Through a communications facility such as the socket, a message may also be
generated from a remote source on the network.

In the above ‘‘Hello, world!’’ example, when the button is clicked on, that button
object "hello" will eventually receive a "buttonRelease" message. At that time, the
object’s script will be executed, and according to the script, a bell will be sounded.

Almost all viola objects have such message handlers that catch the message it’s
interested in. Upon receiving a message, an object typically does some work, and/or
generate more messages for other objects.

If the object does not have any message handlers, the message will ‘‘fall thru’’ the
object, and (by way of usual() method) the class default action will occur. In this case,
for example, the class action for a text button in response to button press/release
events is simply the press/depress visual effect.

But as you see in the script, we have trapped the "buttonRelease" message to make a
sound, before letting the flow of control go to the usual action.

So, a typical viola application consists of a collection of objects interacting −−
generating, receiving, and delegating messages −− with each other, and with the user.

The Extension Scripting Language

As apparent in the example above, the viola scripting language is C−like in syntax.
The language supports very few constructs, such as if, while, do, for, switch.

The commands like print(), exit(), create(), etc are all implemented as methods.
Instead of building even these commonly used functions into the language grammar,
they actually are just defined early enough in the class hierarchy so as to be accessible
by all subclasses that may need them.

All objects can be individually programmed using the scripting language. Each object
is essentially its own interpretive environment, and each object is its own variable
scope. So, an object only affects its own variable values and can not directly affect
other objects’ variables, thus minimizing side effects.

Having an encapsulated mini environment is useful not only for organizational
purposes, but is also useful for enforcing security. This is particularly relevant in the
Internet scaled World Wide Web context.

The ViolaWWW browser application has provisions for treating viola application
files just as any WWW document−− transport via HTTP, and render mini viola

applications as if they’re any web data. This is very powerful, but also raises security
concerns.

So, to protect the user’s system from any possibly dangerous scripts, ViolaWWW
will mark any objects that is imported from remote sources to be "untrusted". In this
way, an imported object may do whatever it’s programmed to do within its own little
environment without being able to adversely affect other environment. Also, since
viola interpreter would then be able to distinquish the "untrusted" objects from the
native "trusted" objects, it can limit the untrusted objects’ operating system
priviledges accordingly (ie: the interpreter will disallow untrusted object from
invoking file system and other potentially sensitive methods or sub interpreters).

For optimization, object scripts are compiled into bytecodes before applying the
bytecode interpreter on them. Because an object’s script is basically a message event
handler that is likely to receive many messages in its instance life time, the one time
cost of parsing and simple transformation into bytecodes seems worthwhile. The gain
in execution speed seems especially apparent when the objects deal with time critical
mouse movement messages, or if there are tight looping operations. For further
optimization, specific significant platform ports could conceivable have the bytecode
compiler generate native machine code rather than the portable bytecode.

Applications

Along side the development of the Viola language/toolkit engine itself, there is also
the development of working applications using the engine. The two development
processes provide reality check for each other.

The Whole Internet Resource Catalog

An early application of viola: an electronic version of the resource catalog portion of
the book The Whole Internet.

This application uses HyperCard style card−flipping technique to flip among four
basic screen layouts. As it was intended for a kiosk type setting, the user interface is
very specific and limited (compared to a general hypertext browser). But, the
rendering code, the objects responsible for the page display, is shared by this
application and the ViolaWWW browser application. Basically, just the user
interface shell is different.

It’s interesting to note that this application was developed with HMML (pre
HTML+), and at the time a binary file format of HMML was used. This method has
been abandoned, however, atleast for now.

The Book Browser

This is an electronic book navigator application that works in conjunction with a
document renderer (ViolaWWW). This application is basically a Table Of Contents
navigator that lets the user browse the section titles, and selecting a title causes
ViolaWWW to render the corresponding section page.

The browser/navigator also has a front−end to WAIS for searching within the book.

[Screendump to be inserted here once this application is revived once again]

World Wide Web Browser

[Note: the GUI design is of 1992 origin, but the rendering capability shown is about
’93]

The ‘‘ViolaWWW’’ application is the first X Windows based World Wide Web
hypertext browser made available to the WWW community (mid 1992).

Since then, work on ViolaWWW has been on the next generation HTML (HTML
3.0). The latest (1994) generation of the ViolaWWW browser handles the standard
HTML, including input−forms, tables, and some very rudimentary math equation
support. In addition to the standard HTML 3.0, the latest ViolaWWW has added
some extensions for greater (than the current generation of Web browsers)
formatting capabilities and for embedding programmable objects in documents. And,
it now also comes with an optional version that uses the Motif toolkit for the
front−end.

Here are some snapshots showing some formatting capablities in ViolaWWW:

Tables

Collapsible/Expandable Lists

Clicking on the folder icon causes the list to expand or shrink. A listing on a page is
no longer just static, but can be dynamic.

Multiple Columns Formatting

One of the viola extensions to HTML provides richer formatting capabilities that is
currently not available with other web browsers. The added <HPANE> tag is
essentially a simple geometry management device that lets one format containers (ie:
sections of text) side by side, nested, and can take max/min width constraint
parameter.

Embedding mini applications

Viola’s language and toolkit allows ViolaWWW to render documents with
embedded viola objects. Although the viola language is not part of the World Wide
Web standard (yet?), having this capability provides a powerful extension mechanism
to the basic HTML.

For example, if the HTML’s input−forms does not do exactly what you want, you
have the option to build a mini input−form application. And it could have special
scripts to check for the validity of the entered data.

Or, if your document need to show data that is continuously updated, you could build
a small application such as this which display the CPU load of a machine. Note that
only the graph field is continuously updated, but not the rest of the document.

Other possible applications include front−ends to the stock market quotes, new wire
updates, tele−video style service, etc.

Here’s an example of a mini interactive application that is embedded into a HTML
document. It’s a chess board in which the chess pieces are actually active and
movable. And, illegal moves can be checked and denied straight off by the
intelligence of the scripts in the application. Given more work, this chess board
application can front−end a chess server, connected to it using the socket facility in
viola.

What follows is a demo of an embedded viola application that lets readers of the this
HTML page communicate by typing or drawing. Like the chess board application

above, this chat application can stand−alone (and have nothing to do with the World
Wide Web), or be embedded into a HTML document.

By the way, to make this possible, a multi−threaded/persistent server was written to
act as a message relay (and to handle HTTP as well).

This next mini application front−ends a graphing process (on the same machine as the
viola process). An important thing to note is that, like all the other
document−embeddable mini applications shown, no special modification to the viola
engine is required for ViolaWWW to support them. All the bindings are done via the
viola language.

Put it another way, because of the scripting capability, the ViolaWWW browser has
become very flexible, and can take on many new features dynamically. C−code
patches and re−compilation of the browser can frequently be avoided.

This attribute can be very important for several reasons. It keeps the size of the core
software small, yet can grow dynamically as less frequently used features are

ocassionally used, or as new accessories/components are added.

Such new accessories can be as simple as little applets that accompany documents, or
conceivable as complicated as a news or mail reader. An analogy is how Emacs’s
programming environment allows that text editor to become much more than just a
text editor.

Not only can mini applications be embedded inside of documents, they can even be
plugged into the ViolaWWW’s "toolbar".

The following picture shows a "bookmark tool" that acts as a mini table of contents
for the page. In this case, the bookmark is linked to the document (by using the
<LINK> tag), and the bookmark will come and go with the document.

One can imagine many plug−in accessories/applets/tools possible with this facility.
Like, a self guiding slideshow tool. Or, document set specific navigational
tools/icons that are not pasted onto the page but are in a non scrolling place on the
browser. Etc.

Summary

The Viola language/toolkit system provides an environment where applications are
composed of groups of objects, where objects interact, by message passing, with the
user and with each other.

As more applications are developed, more reusable objects will be created. And
development of successive applications will become easier and easier. One of the
goals of the Viola project is to accumulate a collection of objects useful for
constructing hypermedia applications.

The immediate future direction of Viola development will continue to aim towards
the path of hypermedia applications, with the World Wide Web as the
document/object network transport infrastructure.

Pei Y. Wei (pei@ora.com)

R&D, Digital Media Group

O’Reilly & Associates

